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ABSTRACT: Multiple scattering of particles is calculated with the superposition T-matrix 
method even if their minimum circumscribing spheres overlap. Starting from the T-matrix of 
arbitrarily shaped particles, mutual interactions are computed using, exclusively, addition 
theorems for spherical vector waves. Although a similar idea has been published recently for 
the two-element case, its extension to an arbitrary number of particles can be very complicated 
and even unfeasible. In this work, a new, more efficient approach is proposed that provides 
practically the same results. In addition, it allows its easy application to an arbitrary number of 
particles simultaneously with the classical superposition T-matrix formulation.  
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1. Introduction 

One of the most powerful methods of particle multiple scattering analysis is based on the 
calculation of the T-matrix of an isolated element and the translation of spherical vector waves 
(SVWs) [1]. This method, usually known as the superposition T-matrix method, has been 
widely utilized for several decades up to the present [2-6]. It has been applied to a great variety 
of problems such as particle scattering modeling in astronomy, oceanography, photographic 
science, antennas, meteorology, plasmonic devices, light emitting diodes or solar cells [1,4,5]. 
The significance of this method has been recently reflected in [7], which proposes a common 
data format for storing the electromagnetic scattering response using the T-matrix formalism. 
Most of these works are based on computing this translation by applying addition theorems for 
SVWs [8-10] between particles whose minimum circumscribing spheres do not overlap, as it 
is a purely analytical method.  

The minimum circumscribing sphere of an object is defined as the sphere with the smallest 
radius that completely encloses the object. It is commonly used in this context because it 
requires the smallest degree of SVW expansion to achieve a given level of accuracy. Fig. 1 
shows the minimum circumscribing spheres for two particles in two scenarios: one without 
overlap and one with. The two spheres overlap when the distance between their centers is 
smaller than the sum of their radii.   

 
[Insert Fig. 1 here] 

 

Classical numerical methods in the field of computational electromagnetics, like the 
Method of Moments (MoM), are usually much less efficient since they require a much larger 
number of unknowns per scatterer even for simple structures such as Perfect Electric Conductor 
(PEC) spheres. In addition, the matrix system is built numerically. In contrast, in the 
superposition T-matrix method, the system is usually built analytically by using the addition 
theorems and the number of unknowns is given by the number of SVWs. This number only 
depends on the electrical size of the scatterer whatever its complexity. For more complex 
particle geometries, numerical methods such as the Finite Element Method (FEM) and the 
Finite-Difference in Time-Domain (FDTD) method are usually preferred. However, the size of 
the equation system increases greatly with the size of the total problem since the volume 
between particles must also be meshed. In addition, large meshes are difficult to generate and 
result in poor quality elements that worsen the condition of the matrix system. 

It is well known that addition theorems are always valid when the minimum possible sphere 
circumscribing the scatterer does not overlap with any minimum sphere circumscribing 
neighboring elements [3]. Although it was established in [11] that this condition could not be 
necessary due to the analytic continuation of the solution in the entire space, this has only been 
shown for two scatterers, smaller than half a wavelength. That was possible by greatly 
increasing the maximum order of the SVWs and computing the T-matrix of the isolated 
scatterer in quadruple precision. The combined result yielded a huge increase in computational 
effort. From a purely mathematical point of view, this result can be justified by the fact that, in 
the case of strongly overlapping minimum spheres, convergence is extremely slow for addition 
theorems formulas, leading to a high number of coefficients in the expansion. This implies 
computing very high order Hankel functions in relation to their argument, which provides very 
high translation matrix coefficients due to the singularity of these functions. Therefore, it will 
require greater precision in the calculation of T-matrix coefficients to keep the multiple 
scattering computation precision. A similar explanation was given in [12]. 

A good way to avoid the limitations of addition theorems in the translation of SVWs is to 
use an intermediate conversion to plane waves. That is, translation is done by plane waves 
instead of addition theorems [13]. This idea was presented in [14] reporting excellent results. 
Although the calculation of translation matrices can be greatly speeded up by using symmetry 



properties [15], its major drawback is that it needs to solve Sommerfeld integrals carefully and 
poor convergence problems can arise [16,17].   

Another approach that avoids the limitations of the direct application of addition theorems 
was introduced in [18] and [19] for antenna coupling. That method is based on the use of 
equivalent infinitesimal dipoles to model the isolated element [20] and the subsequent coupling 
of such models, exclusively using addition theorems in the whole process. A similar but more 
elaborated idea has been recently shown in [21], by distributing multipolar sources across the 
topological skeleton of the scatterer.  The major drawback of these procedures is the difficulty 
to obtain an equivalent model with great precision.  

A different method also based exclusively on the use of addition theorems has been 
proposed in [22] for the case of two scatterers whose minimum spheres overlap. This is 
achieved by previously translating the origins of the local coordinates of the scatterers using 
addition theorems, so that the minimum spheres of such scatterers referred to the new centers 
do not overlap. Subsequently, addition theorems are applied to the T-matrices of each scatterer 
in its new local coordinate system, to translate the SVWs between them. Then, the T-matrix of 
the set is expressed in a global coordinate system by translating the origins of the local 
coordinate systems to this global one. Consequently, the size of the T-matrices in their new 
coordinate system increases, and therefore also the final matrix system, as the particles are 
closer together. In addition, this method must be applied iteratively to analyze multiple 
scattering [3,22]. Unfortunately, it could imply working with enormous T-matrices, and some 
configurations may even be impossible to analyze, as we will show below. 

In this work, it is introduced the use of a different approach, where the translation matrix is 
computed with the scatterers centered in their original local systems of their minimum spheres. 
To this aim, consecutive translations of SVWs are evaluated making use of addition theorems 
to build the translation matrix. In contrast to the methodology suggested in [22], this approach 
makes it possible to calculate the multiple scattering of an arbitrary number of particles at once, 
in a simpler and more efficient way. In addition to the series truncation error in the SVW 
expansion, the proposed method (as well as in works [14-17]) introduces an additional 
convergence control parameter on the translation matrix coefficients themselves. The result is 
an approximate translation matrix, which has better convergence behavior but limited final 
precision. In this way, this approach provides sufficient precision with a much lower degree in 
the SVW expansion compared to [11], and without needing to increase the order of precision 
in computing to quadruple precision or higher. Consequently, the cost is greatly reduced with 
respect to the direct use of translation theorems, as proposed in [11]. 

Several examples will be shown as a comparison with the results obtained in [22], those 
obtained by direct calculation as in [11] and with commercial software. 

Section 2 presents the theoretical development. Firstly, the superposition T-matrix method 
is summarized. Next, the implementation method to estimate the translation matrix of SVWs 
for overlapping minimum spheres is presented. It is based exclusively on addition theorems. 
And finally, a brief discussion on the number of SVWs is given. In section 3 various cases are 
presented, each of them with a different purpose. In the first case, the computational cost and 
applicability of the proposed method is compared with the one discussed in [22]. In the second 
case, the convergence and accuracy are studied in relation to the method of [22] and to the 
method based on an intermediate conversion to plane waves [14]. In the third case, the 
efficiency and the selection of parameters for the proposed method is evaluated. Finally, section 
4 is devoted to state the conclusions. 

2. Materials and methods 

2.1 The superposition T-matrix method 

An isolated particle i in a homogeneous medium can be completely described by its T-matrix 
as 
 𝐓𝐓𝑖𝑖𝐚𝐚𝑖𝑖 = 𝐛𝐛𝑖𝑖 (1) 



 
where 𝐚𝐚𝑖𝑖 and 𝐛𝐛𝑖𝑖 are column vectors containing, respectively, the complex amplitudes of regular 
and outgoing spherical vector wave functions (SVWFs) in which the incident and the scattered 
field for the particle are expanded. These SVWFs are referred to a local coordinate system 
whose center is the one that defines the minimum sphere circumscribing the particle.  

On the other hand, two different particles can be related by a general translation matrix of 
SVWs, 𝐆𝐆𝑖𝑖𝑖𝑖 , between them 
  𝐚𝐚𝑖𝑖

(𝑗𝑗) = 𝐆𝐆𝑖𝑖𝑖𝑖𝐛𝐛𝑗𝑗. (2) 
 

In this way, the incoming field in particle i coming from particle j, which is expanded in 
regular SVWFs with complex amplitudes 𝐚𝐚𝑖𝑖

(𝑗𝑗), is obtained by translation of the field scattered 
by particle j, which is expanded in outgoing SVWFs with complex amplitudes 𝐛𝐛𝑗𝑗.  

The total incident field on a particle belonging to a group of N particles can be expressed as 
the incident field coming directly from outside the group plus the incident field coming from 
the rest of particles. Expressing this in terms of complex amplitudes of regular SVWFs and 
making use of (2) it follows that 
 𝐚𝐚𝑖𝑖 = 𝐚𝐚𝑑𝑑𝑑𝑑 + ∑  𝐆𝐆𝑖𝑖𝑖𝑖𝐛𝐛𝑗𝑗𝑵𝑵

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

. (3) 

 
In (3), 𝐚𝐚𝑑𝑑𝑑𝑑 are the complex amplitudes of the expansion in regular SVWFs of the incident 

field coming directly from outside. 
From (1) and (3) we obtain 

 𝐛𝐛𝑖𝑖 = 𝐓𝐓𝑖𝑖𝐚𝐚𝑑𝑑𝑑𝑑 + 𝐓𝐓𝑖𝑖 ∑  𝐆𝐆𝑖𝑖𝑖𝑖𝐛𝐛𝑗𝑗𝑁𝑁
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

. (4) 

 
If we consider (4) for each of the N particles belonging to the group, we can obtain the T-

matrix for the group 𝐓𝐓g, where the SVWs for each particle are referred to its local coordinate 
system 
 𝐓𝐓g = [𝐈𝐈 − 𝐓𝐓𝐓𝐓]−1𝐓𝐓. (5) 

 
In (5), 𝐓𝐓 is a block-diagonal matrix whose elements are the T-matrices for each single 

(isolated) particle 𝐓𝐓𝑖𝑖 , and 𝐆𝐆 is a square matrix whose elements are the general translation 
matrices 𝐆𝐆𝑖𝑖𝑖𝑖  given by (2). Thus, the application of this method requires being able to calculate 
the submatrices 𝐆𝐆𝑖𝑖𝑖𝑖  for an aggregate of arbitrarily shaped particles in arbitrary positions.  

2.2 General translation matrix by using addition theorems 

In this section we will discuss those cases in which the general translation matrix 𝐆𝐆𝑖𝑖𝑖𝑖 can be 
calculated using, exclusively, the three expressions of the addition theorems for SVWs [13, Eq. 
5.24-5.26]: 

 
           𝐌𝐌𝑝𝑝

(1)(𝒓𝒓 − 𝒓𝒓𝑂𝑂′) = ∑ 𝐺𝐺𝑝𝑝𝑝𝑝
(1)(𝒓𝒓𝑂𝑂 − 𝒓𝒓𝑂𝑂′) 𝐌𝐌𝑞𝑞

(1)(𝒓𝒓 − 𝒓𝒓𝑂𝑂) 𝑞𝑞 ,    (6a) 
 

 𝐌𝐌𝑝𝑝
(3)(𝒓𝒓 − 𝒓𝒓𝑂𝑂′) = ∑ 𝐺𝐺𝑝𝑝𝑝𝑝

(1)(𝒓𝒓𝑂𝑂 − 𝒓𝒓𝑂𝑂′) 𝐌𝐌𝑞𝑞
(3)(𝒓𝒓 − 𝒓𝒓𝑂𝑂)𝑞𝑞 ,           |𝒓𝒓 − 𝒓𝒓𝑂𝑂| > |𝒓𝒓𝑂𝑂 − 𝒓𝒓𝑂𝑂′| (6b) 

 
 𝐌𝐌𝑝𝑝

(3)(𝒓𝒓 − 𝒓𝒓𝑂𝑂′) = ∑ 𝐺𝐺𝑝𝑝𝑝𝑝(𝒓𝒓𝑂𝑂 − 𝒓𝒓𝑂𝑂′) 𝐌𝐌𝑞𝑞
(1)(𝒓𝒓 − 𝒓𝒓𝑂𝑂) 𝑞𝑞 ,           |𝒓𝒓 − 𝒓𝒓𝑂𝑂| < |𝒓𝒓𝑂𝑂 − 𝒓𝒓𝑂𝑂′| (6c) 

 
where 𝐌𝐌𝑝𝑝

(1)(𝒓𝒓 − 𝒓𝒓𝑂𝑂) are the regular SVWFs centered in 𝒓𝒓𝑂𝑂 and 𝐌𝐌𝑝𝑝
(3)(𝒓𝒓 − 𝒓𝒓𝑂𝑂) are the outgoing 

SVWFs. The summation indices p and q subsume the degree n, the order, and the polarization 
of the SVWs. Coefficients 𝐺𝐺𝑝𝑝𝑝𝑝

(1)(𝒓𝒓𝑂𝑂 − 𝒓𝒓𝑂𝑂′) and 𝐺𝐺𝑝𝑝𝑝𝑝(𝒓𝒓𝑂𝑂 − 𝒓𝒓𝑂𝑂′) will be computed here using a 



rotation-axial translation-inverse rotation technique [10] [23], although they can be computed 
using expressions involving the Wigner-3j symbols [13].  

The general translation matrix can be then obtained as follows: 
1) Calculate the minimum circumscribing spheres for two particles. If their minimum spheres 
do not overlap, condition in (6c) is always satisfied and the divergence problem of the SVW 
expansion inside the minimum spheres of arbitrary particles [24] is avoided.  Thus, the scattered 
electric field by particle j, 𝑬𝑬𝑠𝑠𝑠𝑠, expanded in terms of outgoing SVWFs in the local coordinate 
system of particle j centered in Oj, the center of its minimum sphere, 
 

𝑬𝑬𝑠𝑠𝑠𝑠�𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂� = ∑ 𝑏𝑏𝑝𝑝𝑝𝑝 𝐌𝐌𝑝𝑝𝑝𝑝
(3)�𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂�𝑝𝑝𝑝𝑝 ,     (7a) 

 
can be translated to the local coordinate center of the minimum sphere of particle i, Oi, by using 
(6c) 
 

𝑬𝑬𝑠𝑠𝑠𝑠(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂) = ∑ 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∑ 𝐺𝐺𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝�𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂� 𝐌𝐌𝑝𝑝𝑝𝑝
(1)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂)𝑝𝑝𝑝𝑝    (7b) 

This field will be the incoming electric field in particle i coming from particle j, 𝑬𝑬𝑖𝑖
(𝑗𝑗), expanded 

in terms of regular SVWFs centered in Oi 
 

𝑬𝑬𝑖𝑖
(𝑗𝑗)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂) = ∑ 𝑎𝑎𝑝𝑝𝑝𝑝

(𝑗𝑗) 𝐌𝐌𝑝𝑝𝑝𝑝
(1)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂).𝑝𝑝𝑝𝑝                                                       (7c) 

 

By identifying (7b) with (7c), (2) is easily derived, where 𝐺𝐺𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝�𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂� will be the 
coefficients of the transpose of the general translation matrix 𝐆𝐆𝑖𝑖𝑖𝑖. This matrix has been obtained 
by truncating the SVW expansions in both centers. 

2) If their minimum circumscribing spheres overlap, find a plane that separates the two 
particles, and does not intersect them. If it is not possible to find a separation plane, this 
methodology is not applicable. Fig. 2 shows two particles i and j centered in Oi and Oj 
respectively, with overlapping minimum circumscribing spheres. A separating plane has been 
defined between them. They have been placed at the same y coordinate in a global coordinate 
system to simplify the drawing, without loss of generality. 

 
[Insert Fig. 2 here] 

 
3) For each of the two particles, find a new coordinate system so that their new minimum 

spheres referred to the center of these new coordinate systems do not intersect, i.e., they are, at 
most, tangent to the separating plane found in step 2). It is important to note that there does not 
exist a general method that provides a new minimum sphere that is tangent to the separation 
plane, because it depends on the shape and attitude of the particle. Some cases of interest, where 
the problem can be reduced to 2D, can be optimally solved using the methods developed for 
solving one case of the Apollonius’ problem. This involves finding the circumference tangent 
to a line that passes through two points. In any case, a general method can be used that consists 
of the following procedure. First, find the line lj perpendicular to the plane that passes through 
Oj. In this line we will locate the new center Ou. The position of the new center will be 
determined by imposing that the distance to the plane is the same as the distance to an extreme 
point of the particle E that is the closest to the plane. In this way, the minimum sphere centered 
in Ou should not intersect either the separating plane or the particle. The same procedure is also 
applied to the other particle i, and a new center Ov is then found. Fig 2 shows a 2D 
representation. 

4) Starting from the field scattered by particle j given in terms of outgoing SVWFs with 
complex amplitudes 𝐛𝐛𝑗𝑗 in its original center Oj, given by (7a), translate it to the new center Ou 



obtained in step 3) by using (6b): 
  

 𝑬𝑬𝑠𝑠𝑠𝑠(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂) = ∑ 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∑ 𝐺𝐺𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝
(1) �𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂� 𝐌𝐌𝑝𝑝𝑝𝑝

(3)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂)𝑝𝑝𝑝𝑝 . (8a) 
 

This field can be directly expressed in terms of regular SVWFs with complex amplitudes 𝐛𝐛𝑢𝑢 
      

                           𝑬𝑬𝑠𝑠𝑠𝑠(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂) = ∑ 𝑏𝑏𝑝𝑝𝑝𝑝 𝐌𝐌𝑝𝑝𝑝𝑝
(3)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂).𝑝𝑝𝑝𝑝  (8b) 

 
 By identifying (8a) with (8b), the following matrix expression can be found if the SVW 

expansions in both centers are truncated 
 𝐛𝐛𝑢𝑢 = 𝐆𝐆𝟏𝟏𝑢𝑢𝑢𝑢𝐛𝐛𝑗𝑗, (9) 
where 𝐺𝐺𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝

(1) �𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂� will be the coefficients of the transpose of the decentering matrix 
𝐆𝐆1𝑢𝑢𝑢𝑢. The new expansion will converge outside the minimum sphere of the particle at its new 
center Ou, which always satisfies the condition given in (6b). In this way, this procedure 
changes the convergence region of the expansion in outgoing SVWFs to that provided by the 
new minimum sphere given by ROu >ROumin, with ROumin being the radius of the minimum sphere 
that circumscribes the particle j centered in Ou (see Fig. 2). The decentering matrix 𝐆𝐆1𝑢𝑢𝑢𝑢 can 
be calculated by using rotations and axial translation as follows:  
 
 𝐆𝐆𝟏𝟏𝑢𝑢𝑢𝑢 = �𝐑𝐑𝑗𝑗�φ𝑗𝑗�𝐃𝐃𝑗𝑗�𝜃𝜃𝑗𝑗�𝐂𝐂𝟏𝟏�−�𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂�/𝜆𝜆��

𝑇𝑇
. (10) 

 

Matrices 𝐑𝐑𝑗𝑗�φ𝑗𝑗� and 𝐃𝐃𝑗𝑗�𝜃𝜃𝑗𝑗� make it possible the reorientation of outgoing SVWFs for 
particle j. By rotating φ𝑗𝑗 and 𝜃𝜃𝑗𝑗 the original coordinate system of particle j, it will have its x-z 
plane orthogonal to the separating plane with the z-axis orthogonal and oriented towards the 
plane. 𝐂𝐂𝟏𝟏�−�𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂�/𝜆𝜆� is a matrix that allows for an axial translation of SVWFs from the 
rotated coordinate system of particle j to the new center Ou. Elements of these matrices have 
been defined in [23] and [10]. However, elements of 𝐂𝐂𝟏𝟏�−�𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂�/𝜆𝜆� are computed by 
using Bessel functions according to the second case of addition theorems for axial translations 
given in Appendix 3 of [10].  

5) Starting from the field scattered by the particle j towards particle i, given by (8b) in terms 
of outgoing SVWFs with complex amplitudes 𝐛𝐛𝑢𝑢 in the new center Ou, translate this field to 
the new center in particle i, Ov, by using (6c) 

 
𝑬𝑬𝑠𝑠𝑠𝑠(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂) = ∑ 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∑ 𝐺𝐺𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝(𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂) 𝐌𝐌𝑝𝑝𝑝𝑝

(1)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂)𝑝𝑝𝑝𝑝    (11a) 
 
 This field will be the incoming field in particle i coming from particle j, expressed in terms 

of regular SVWFs with complex amplitudes 𝐚𝐚𝑣𝑣
(𝑗𝑗) referred to the new center in particle i, Ov  

 
𝑬𝑬𝑖𝑖

(𝑗𝑗)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂) = ∑ 𝑎𝑎𝑝𝑝𝑝𝑝
(𝑗𝑗) 𝐌𝐌𝑝𝑝𝑝𝑝

(1)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂)𝑝𝑝𝑝𝑝 .     (11b) 
 
 It should be noted that condition in (6c) is now satisfied. The divergence problem of the 

SVW expansion inside the minimum circumscribing spheres of arbitrary particles [24] is 
avoided since minimum spheres of particles referred to the new centers Ou and Ov do not 
overlap (see Fig. 2). By identifying (11a) with (11b), the usual expression for non-overlapping 
minimum spheres in matrix form is obtained when the SVW expansions in the new centers are 
truncated: 

 



 𝐚𝐚𝑣𝑣
(𝑗𝑗) = 𝐆𝐆𝑣𝑣𝑣𝑣𝐛𝐛𝑢𝑢. (12) 

  
where 𝐺𝐺𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝(𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂) will be the coefficients of the transpose of the general translation 
matrix 𝐆𝐆𝑣𝑣𝑣𝑣. 
By using addition theorems for axial translation and rotation properties [10][23] we have 
 
 𝐆𝐆𝑣𝑣𝑣𝑣 = [𝐑𝐑𝑢𝑢(φ𝑢𝑢)𝐃𝐃𝑢𝑢(𝜃𝜃𝑢𝑢)𝐂𝐂(|𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂|/𝜆𝜆) 𝐃𝐃𝑣𝑣(𝜃𝜃𝑣𝑣)𝐑𝐑𝑣𝑣(φ𝑣𝑣)]𝑇𝑇. (13) 

 
In (9), 𝜑𝜑𝑢𝑢  and 𝜃𝜃𝑢𝑢  orientate the z-axis in the coordinate system associated to center Ou 

towards center Ov, by a 𝜑𝜑-rotation followed by a 𝜃𝜃-rotation. Matrices 𝐑𝐑𝑢𝑢(φ𝑢𝑢) and 𝐃𝐃𝑢𝑢(𝜃𝜃𝑢𝑢) 
perform these rotations for the outgoing SVWFs referred to center Ou. 𝐂𝐂(|𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂|/𝜆𝜆) is a 
matrix that allows for an axial translation of the coordinate system from center Ou to center Ov, 
relating outgoing to regular SVWFs. Finally, 𝜃𝜃𝑣𝑣 and φ𝑣𝑣 orientate the z-axis associated to center 
Ov orthogonal to the separating plane. It can be achieved by a 𝜃𝜃-rotation followed by a φ-
rotation of the regular SVWFs referred to center Ov, by using matrices  𝐃𝐃𝑣𝑣(𝜃𝜃𝑣𝑣)  and 
𝐑𝐑𝑣𝑣(φ𝑣𝑣), respectively. 

6)  Starting from the incident field in particle i coming from particle j, given in terms of 
regular SVWFs referred to center Ov (11b), translate this field to the original coordinate system 
of particle i, centered in Oi, by making use of (6a) 

 
𝑬𝑬𝑖𝑖

(𝑗𝑗)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂) = ∑ 𝑎𝑎𝑝𝑝𝑝𝑝
(𝑗𝑗)

𝑝𝑝𝑝𝑝 ∑ 𝐺𝐺𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝
(1) (𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂) 𝐌𝐌𝑝𝑝𝑝𝑝

(1)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂).𝑝𝑝𝑝𝑝  (14a) 
 
 This field in the same coordinate system can be directly expressed in terms of regular 

SVWFs with complex amplitudes 𝐚𝐚𝑖𝑖
(𝑗𝑗) 

 
𝑬𝑬𝑖𝑖

(𝑗𝑗)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂) = ∑ 𝑎𝑎𝑝𝑝𝑝𝑝
(𝑗𝑗) 𝐌𝐌𝑝𝑝𝑝𝑝

(1)(𝒓𝒓 − 𝒓𝒓𝑂𝑂𝑂𝑂)𝑝𝑝𝑝𝑝      (14b) 
 
 
From (14a) and (14b) the following matrix expression is found if the SVW expansion in 

both centers Ov and Oi is truncated 
 
 𝐚𝐚𝑖𝑖

(𝑗𝑗) = 𝐆𝐆𝟏𝟏𝑖𝑖𝑖𝑖 𝐚𝐚𝑣𝑣
(𝑗𝑗) , (15) 

 
where 𝐺𝐺𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝

(1) (𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂) will be the coefficients of the decentering matrix 𝐆𝐆1𝑖𝑖𝑖𝑖. This matrix 
can be calculated by using rotations and axial translation as 
 
 𝐆𝐆𝟏𝟏𝑖𝑖𝑖𝑖 = [𝐂𝐂𝟏𝟏(−|𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂|/𝜆𝜆)𝐃𝐃𝑖𝑖(𝜃𝜃𝑖𝑖)𝐑𝐑𝑖𝑖(φ𝑖𝑖)]𝑇𝑇. (16) 

 
In (16), 𝐂𝐂𝟏𝟏(−|𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂|/𝜆𝜆) is a matrix that allows for an axial translation of SVWs from 

center Ov to the original center Oi of particle i. Matrices 𝐃𝐃𝑖𝑖(𝜃𝜃𝑖𝑖) and 𝐑𝐑𝑖𝑖(φ𝑖𝑖) make it possible 
the reorientation of the regular SVWFs of particle i after recentering. By rotating 𝜃𝜃𝑖𝑖 and φ𝑖𝑖,  
the local coordinate system will coincide with the original local coordinate system of particle i 
centered in Oi. 

7) Calculate the general translation matrix given by (2) from (9), (12) and (15) 
 
 𝐆𝐆𝑖𝑖𝑖𝑖 = 𝐆𝐆𝟏𝟏𝑖𝑖𝑖𝑖 𝐆𝐆𝑣𝑣𝑣𝑣𝐆𝐆𝟏𝟏𝑢𝑢𝑢𝑢 . (17) 
 

In the particular case of having a separating plane orthogonal to the direction of the line 
joining the original centers of particles i and j, 𝐆𝐆𝑣𝑣𝑣𝑣 reduces to 
 



 𝐆𝐆𝑣𝑣𝑣𝑣 = [𝐂𝐂(|𝒓𝒓𝑂𝑂𝑂𝑂 − 𝒓𝒓𝑂𝑂𝑂𝑂|/𝜆𝜆)]𝑇𝑇. (18) 
 

It should be noted that the equality given by (17) is true only if infinite terms are retained in 
the SVW expansions in the new coordinate systems obtained in step 3). Since these SVW 
expansions must be truncated, the general translation matrix thus obtained is an approximation 
to the exact general translation matrix, but with an extra convergence control parameter given 
by the maximum degree of these intermediate expansions. Truncation of the SVW expansions 
results in the highest value coefficients of the general translation matrix 𝐆𝐆𝑖𝑖𝑖𝑖 being truncated. 
These coefficients arise from the evaluation of high-order Hankel functions. They are 
responsible for the divergence of the solution as we are working with a finite precision to 
compute the T-matrix. Excessive truncation of these coefficients provides results with lower 
precision, but insufficient truncation of them still produces a wrong result. Increasing the 
accuracy of the T-matrix by adding coefficients related to higher order SVWs will permit a 
smaller truncation of the highest coefficients of the general translation matrix. In this way, the 
result will converge in a greater margin of values of maximum degree of the intermediate 
expansion.  This will in principle improve the precision, although this improvement may 
become very insignificant in those cases in which the precision of the T-matrix is good enough 
for the distance between particles studied. 

Therefore, we will have a relative convergence problem that will need to be studied. As 
shown in section 3, results that converge better towards the solution can be found by means of 
an adequate selection of these maximum degrees, at the cost of providing a limited maximum 
precision. 

2.3 Number of SVWs 

In order to compute (17), the maximum degree values of the SVW expansion in its original 
coordinate system (𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗) and in the coordinate system associated to the new center (𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗) 
should be chosen for each particle. 

As explained in [15], 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 should be chosen to provide the desired accuracy. The criterion 
given in [25] can be applied: 

 
 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = �𝑘𝑘𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 + 0.045 �𝑘𝑘𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

3  (−𝑃𝑃𝑡𝑡𝑡𝑡 )�, (19) 
 
where 𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 is the radius of the minimum circumscribing sphere in the original coordinate 
system, k is the wavenumber and 𝑃𝑃𝑡𝑡𝑡𝑡 is the relative truncated (i.e., excluded due to the series 
truncation) power in dB with respect to the total radiated power. Because of the very close 
interactions in case of overlapping minimum spheres, it was verified in [14] that very good 
results are obtained by choosing 𝑃𝑃𝑡𝑡𝑡𝑡 equal to -130 dB for elements with a minimum sphere with 
radius less than a half wavelength. However, in the case of elements referred to a center far 
away from them, we have observed that (19), choosing 𝑃𝑃𝑡𝑡𝑡𝑡 equal to -130 dB, cannot be enough 
to estimate 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. Therefore, convergence studies will be presented in the next section. 
  



3. Results and discussion 

3.1 Computational cost and applicability 

The computational cost and applicability of the method is compared with the one presented in 
[22]. For this purpose, we first study two PEC disks, infinitely thin, with radii equal to a 
wavelength. Unlike [22], which uses an analytical method to obtain the T-matrix of a single 
(isolated) disk, here it will be computed with the FEM [26]. In future work, it would be more 
convenient to use, whenever possible, T matrices that have already been computed by other 
researchers [7]. However, for particles with arbitrary shapes and compositions, for which such 
precomputed data may not be available, the FEM [26] can still be applied.  

In [22], the chosen maximum index 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 was 20 for the T-matrix of the single disk in its 
original center (the disk center). From this T-matrix, two T-matrices referred to new centers so 
that their minimum circumscribing spheres do not overlap were obtained in that work. The 
maximum index for both T-matrices in the new centers (equivalent to 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ) was found 
through a convergence study, being 32 for a separation distance of half a wavelength. With the 
resulting T-matrices, the total two-disk T-matrix was computed using an expression given in 
[3] for two scatterers. This expression requires the inversion of two matrices with a size equal 
to the resulting T-matrices. Thus, the larger the overlap, the larger the size of the matrices to be 
inverted in [22]. However, with the approximation proposed in this work, the size of the 
matrices to invert is always the same, whatever the distance between the particles. It has been 
also reported the same example but with a smaller separation between the disks (larger 
overlapping), equal to 0.2 wavelengths. Table 1 shows the size of the matrices to be inverted in 
[22] in contrast with the size needed in this work when the same expression is used to compute 
the total T-matrix. 

Fig. 3 shows the normalized bistatic radar cross section (RCS) of the two PEC disks 
separated by half a wavelength. It has been obtained for a 60º incident angle, compared with 
the results in [22] and a FEM simulation of the whole structure using the method provided in 
[26]. To obtain these results we have applied the same parameters as in [22], i.e., 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 was 20 
and 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 was 32. It can be observed that the three results are practically identical. 

 
[Insert Table 1 here] 

 
[Insert Fig. 3 here] 

 

The scattering of more than two particles can be easily dealt with by (5). However, in [22] 
the author does not solve any problem of more than two scatterers. The method suggested in 
[22] for more than two scatterers is based on forming a multi-scatterer in an iterative process 
to build a new multi-scatterer T-matrix. Unfortunately, this strategy can be very inefficient as 
the number of scatterers increases. In this sense, the example drawn in Fig. 4 is illustrative, 
where only eight scatterers have been drawn. To consider a higher number, additional scatterers 
are added forming two rows of parallel disks with radii equal to a wavelength separated 
0.5 wavelengths. In turn, the top row is horizontally displaced by a distance equal to one 
wavelength with respect to the bottom row. In this way, the minimum spheres of contiguous 
scatterers overlap each other as shown in Fig. 4. For this example, a good strategy to apply the 
method suggested in [22] is to group the disks two by two and group the result with another 
group of four, and so on. 

 
[Insert Fig. 4 here] 

 
Fig. 5 compares the sizes of the matrices to be inverted for both methods. In the method of 



[22], only the size of the matrices in the last iteration is shown. In order to compute 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 for 
each group of scatterers, the value provided by (19) choosing 𝑃𝑃𝑡𝑡𝑡𝑡 equal to -130 dB has been 
used. This underestimates the real value needed to achieve convergence in cases of highly 
decentered spheres, as it will be shown later. Therefore, for our approach we really show the 
total effort whereas for the method in [22] the effort is always greater than the effort shown in 
the figure. Even so, it can be seen that our method requires much less effort than this one as the 
number of scatterers increases. It should also be observed that, when grouping scatterers, the 
degree of the SVWs increases rapidly. Thus, in this example, for a group of only 8 scatterers a 
value of 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 equal to 700 is needed. This makes computing the decentering and coupling 
matrices of SVWs much more costly. 

 
[Insert Fig. 5 here] 

 
 

3.2 Convergence and accuracy 

Two PEC spheroids are considered in this subsection. They have a major axis b of 0.6λ and a 
minor axis a of 0.25b. Separation between original centers is equal to 0.3λ (0.15λ between the 
edges of the spheroids), as shown in Fig. 6a. 

It is first solved by using a 0.78λ separation between the new centers to compute (17), which 
is slightly higher than the minimum distance needed to avoid the overlapping problem in the 
computation. 

Fig. 7 shows the convergence of our result, compared with the FEM result of the whole 
structure. The accuracy is computed as an approximate number of decimal digits in the 
computation of T-matrix for the whole structure as a function of the maximum degree values 
of the SVW expansion in the coordinate system associated to the new center (𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), chosen 
to compute (17). It is given as a family of curves for different values of the maximum degree 
of the SVW expansion in its original coordinate system (𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗). The approximate number of 
decimal digits is given by -log(RE) [27], where RE is the relative error defined as:  

 RE = ‖𝐓𝐓a−𝐓𝐓FEM‖
‖𝐓𝐓FEM‖

     (20) 

𝐓𝐓a is the T-matrix computed with the proposed method, but with all the SVWs referred to the 
same coordinate system, and 𝐓𝐓FEM  is the T-matrix computed with FEM, that is taken as a 
reference solution.  

 
 

[Insert Fig. 6 here] 
 
If (19), choosing 𝑃𝑃𝑡𝑡𝑡𝑡 equal to -130 dB, were used directly instead of doing a convergence 

study, this would give good results in this case. Thus, an 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 value of 9 and an 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 value 
of 10 are obtained, which provide a 3.68 digits accuracy according to Fig. 7.  

The same example is next solved by increasing the distance between new centers to 1.5λ to 
compute (17). Fig 8 shows the convergence of our result, compared with the FEM result. It is 
worth noting that increasing the distance between new centers does not improve the precision 
of the results. However, the computational effort to compute (17) is strongly increased since an 
𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 of 18 is needed to obtain the same accuracy. The value provided by (19) was 14 with a 
𝑃𝑃𝑡𝑡𝑡𝑡  of −130 dB, and therefore, according to Fig. 8, it does not provide such a good estimation 
in this case.  

These new centers were also considered to solve the same problem with the method provided 
in [22]. The obtained accuracy practically coincides with that shown in Fig. 8, with a maximum 



difference in the RE of 10-5 between both methods. Therefore, both methods provide the same 
results. However, the method described in [22] requires the inversion of two matrices with a 
size of 720 (2×18×20). In contrast, the computational effort of our method implies the inversion 
of two matrices with a size of 198 (2×9×11). 

 
[Insert Fig. 7 here] 

 
[Insert Fig. 8 here] 

 
It should be noted that these new centers allow reducing the distance between spheroids 

edges to 0.0375λ, where a very strong overlapping occurs (see Fig. 6b). Fig. 9 shows the 
convergence in this case, where the behavior is similar to the one shown in Fig. 8, but the 
maximum accuracy is approximately half, due to the close proximity between the spheroids. 
Fig. 10 presents the monostatic RCS results for the two-spheroid cases depicted in Figs. 6a and 
6b. It can be observed that the result for 6b is slightly shifted compared to that obtained with 
FEM, because the approximate number of decimal digits is lower in this case, which is 
consistent with the results shown in Figs. 7 and 9. 

 
[Insert Fig. 9 here] 

 
[Insert Fig. 10 here] 

 
The application of the proposed method provides the same convergence pattern for every 

case of study. That is, for a starting accuracy given by the degree of expansion in SVWs used 
to obtain the T-matrix of isolated particles (𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ), the accuracy of the results increases 
progressively as the degree of the SVWs in the new center (𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) until it sharply drops. The 
range of 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  values where the problem has converged is wider the greater the initial 
precision and the longer the decentering distance. However, choosing a longer decentering 
distance increases the value of 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 required to obtain the same accuracy and, consequently, 
the computational effort. This is a well-known behavior of relative convergence, which also 
occurs in the method used in [14] and [15] and which has been well documented in [17]. Fig. 11 
shows the convergence of the result obtained for the case depicted in Fig. 6a, by using a 
transformation to plane vector waves to compute the translation matrix [14]. It is clearly noticed 
that these results present almost the same maximum accuracy than the results shown in Figs. 7 
and 8 for the proposed method and the same convergence behavior. 

 
[Insert Fig. 11 here] 

 
Fig. 12 shows the magnitude of the non-zero coefficients of three columns of general 

translation matrices. Three matrices are compared: the translation matrix computed using the 
proposed method to obtain the results in Fig. 8 with 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 22 , the translation matrix 
computed using the method based on transformation to plane waves to obtain the results in Fig. 
11 with 𝜅̅𝜅𝑡𝑡𝑡𝑡 = 3.75 for similar accuracy, and that obtained with the direct method that computes 
it as in the non-overlapping case. Both the proposed method and the one based on plane wave 
transformation, truncate the highest coefficients in a similar way in relation to the direct 
method. It can also be observed that the truncation is greater as the degree of the SVW 
expansion (𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗) increases. This value has been represented on the abscissa axis. These results 
are in agreement with the reasoning given in section 2.2. 

 
 

[Insert Fig. 12 here] 



 
 

3.3 Efficiency and selection of the truncation degree  

Although the number of SVWs needed in the T-matrix of the isolated element is greater in the 
case of overlapping of minimum spheres, the proposed method is still more efficient than 
classical numerical methods in computational electromagnetics. 

Fig. 13 shows the computing time required to calculate the monostatic RCS for the case 
given in Fig. 6a as a function of the number of spheroids placed in parallel. Results are given 
for different numbers of incidence directions. It compares the computing times obtained using 
the commercial software CST [28] and the presented method. The commercial software uses 
the optimal solver method for the MoM in each case (a direct solver, for 11 spheroids, and 
Multilevel Fast Multipole Method (MLFMM), in the rest of the cases) whereas we use a 
conventional direct solver. As can be seen, our method is much faster in all cases, even for such 
a simple scatterer. More complex geometries will lead to much larger computing time 
differences between both methods. Fig. 14 shows the monostatic RCS for a case with 11 
spheroids. An excellent agreement with commercial software can be observed since they 
present a match of practically three significant digits. It is also provided the array factor 
response, which is obtained without considering the mutual interactions, to note their effect 
between the spheroids. It is computed by making 𝐆𝐆 = 𝟎𝟎 in (5). 

 
[Insert Fig. 13 here] 

 
[Insert Fig. 14 here] 

 
Fig. 15 shows the results for the same case, obtained by applying the direct method that 

computes the translation matrix as in the non-overlapping case, compared with the results 
obtained in this work for different values of 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 . We have used 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 9, with 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 
between 5 and 9 for the proposed method with a distance of 0.78λ between the new centers of 
close spheroids with overlapping minimum spheres. They have been chosen according to the 
two-spheroid case studied in Fig. 7, which ensures more than two digits of precision, and are 
directly used for different sizes of particle groups. The results obtained with the proposed 
method are indistinguishable since the maximum deviation found between them is 0.5%, which 
corresponds to two hundredths of a decibel at the worst angle. However, none of these values 
of 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 provides an accurate result using the direct method. In all the cases, double precision 
has been used in the computation with Matlab. For 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗=9 in the direct computation, the 
matrix to invert in (5) is close to singular (rcond=1.03E-17). 

Figure 16 shows the results obtained by setting 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 5, with 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 from 9 to 14. The 
result obtained is in accordance with Fig. 7, where the accuracy decreases as 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  increases. 
It can be seen that, for a precision of less than 1.5 digits the results begin to move away from 
the correct result obtained with 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 9 . Therefore, results in Figs. 15 and 16 confirm that 
the convergence study for two spheroids can be used for the study of an aggregate of an arbitrary 
number of the same spheroids. 

The convergence study for two particles could be avoided if a formula were available that 
provided the optimum value of parameter 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 as a function of the decentered radius and 
𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. In this sense, in order to estimate the optimum 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, several cases of two spheroids 
have been studied for a typical size of particles with a minimum-sphere radius up to 0.45λ and 
𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 equal to 10. It has been found the following phenomenological formula 

 
𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = �7.58 �𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
− 1� + 10�     (21) 



 
where 𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂and 𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 are the radius of the minimum sphere in the original center and in the 
new center respectively, and [ ] denotes the closest integer value. This formula is built from the 
baseline case consisting of non-overlapping spheres. In that case, decentering is not required 
and thus we can consider  𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 . It should be noted that for a 𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  lower than 
approximately 0.37λ, very good results can be obtained with lower values of 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. However, 
for such values (21) is no longer applicable since it has been obtained fixing 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 10. The 
different cases considered to calculate the slope in (21) are generated by considering variations 
in the spheroid dimensions (minor axis) and different values for the separation between original 
centers. This variety of parameter values led to different 𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂/𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ratios, and for each case 
𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 was obtained. It was observed that the relationship between 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 and 𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂/𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 
followed an approximately linear pattern, so finally the slope was estimated by applying linear 
regression on the calculated 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 values. This formula has been successfully applied to such 
complicated objects as arrays of patch or dielectric resonator antennas located in close 
proximity. These results will not be shown here for the sake of brevity. 

 
[Insert Fig. 15 here] 

 
[Insert Fig. 16 here] 

 
 

4. Conclusion 

In this work it has been shown that the classical formulation of the superposition T-matrix 
method can be utilized even if the minimum circumscribing spheres for the particles overlap. 
To this aim, a new approach has been introduced. It is based on approximating the general 
translation matrix as a product of three matrices. These matrices are computed by using addition 
theorems and rotation properties. They represent decentering, translation and recentering 
operations, respectively. This approach is more efficient and systematic than a previously one 
found in the literature, which is based on the previous computation of decentered T-matrices, 
giving practically the same accuracy for the two-element case.  

The article presents the formal computational framework of the proposed method, 
accompanied by an initial collection of case studies that highlight its advantages. Future 
research on the methodology should involve additional case studies to further explore its 
characteristics, for example, aiming to derive more general equations that ensure convergence 
without the need of previous studies. The method gives researchers the ability to expand the 
range of applicability of their superposition T-matrix codes with a small effort. Within this 
widening, the method is applicable in a great variety of problems, practically eliminating the 
restriction of separation distance between elements, such as: sensing of atmospheric particles, 
the performance of astrophysical studies, analysis and design of antenna arrays, computing 
RCS for military applications, optimization of light scattering for plasmonic devices, light-
emitting diodes, or solar cells. 
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Table 1. Comparison of the matrix-to-invert sizes for two disks with radii equal to a wavelength 

Separation between disks Matrix size in this work Matrix size in [21] 
0.5λ 880 2176 
0.2λ 880 5200 
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Fig 1. Minimum-circumscribing spheres for two particles in two scenarios: a) without overlap, 
b) with overlap. 

Fig 2. 2-D representation of two particles centered in Oi and Oj, with overlapping minimum 
spheres, and a separating plane. From this plane two new centers for the particles, Ou and Ov, 
are obtained so that their minimum spheres do not overlap. 

Fig. 3. Normalized bistatic radar cross section for two PEC disks with radius 𝑎𝑎 = 𝜆𝜆 separated 
a distance 𝑑𝑑 = 0.5𝜆𝜆. Incident angle equal to 60º. 

Fig. 4. Eight disks with radii equal to a wavelength and mutually overlapping minimum 
spheres. 

Fig. 5. Maximum size of the matrices to invert as a function of the number of disks for the case 
depicted in Fig. 3. 

 Fig. 6. Two spheroids and their minimum spheres with a separation equal to: a) 0.5b, b) 0.3125b. 
 
Fig. 7. Accuracy in terms of approximate number of decimal digits for different values of the 
maximum index 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 in its original coordinate system, as a function of the maximum index  
in the new center 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, for the case depicted in Fig. 6a. Eq. (17) is computed with a distance 
of 0.78λ between the new centers.  
 
Fig. 8. Accuracy in terms of approximate number of decimal digits for different values of the 
maximum index 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 in its original coordinate system, as a function of the maximum index 
in the new center 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, for the case depicted in Fig. 6a. Eq. (17) is computed with a distance 
of 1.5λ between the new centers. 
 
Fig. 9. Accuracy in terms of approximate number of decimal digits for different values of the 
maximum index 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 in its original coordinate system, as a function of the maximum index 
in the new center 𝑛𝑛d𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, for the case depicted in Fig. 6b. 
 
Fig. 10. Monostatic RCS calculated for two spheroids in Figs 6a and 6b at φ=0º. For every 
incident angle, a horizontally polarized field (parallel to the xy plane) was considered. 

Fig. 11. Accuracy in terms of approximate number of decimal digits for different values of the 
maximum index 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 in its original coordinate system, as a function of the integral truncated 
value 𝜅𝜅𝑡𝑡𝑡𝑡  normalized to the wavenumber k as defined in [14], for the case depicted in Fig. 6a. 

Fig. 12. Coefficients of three columns of the general translation matrix for the case depicted in 
Fig. 6a. Comparison between this work (𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 22), the method based on plane waves 
transformation (𝜅𝜅𝑡𝑡𝑡𝑡 = 3.75𝑘𝑘)  and the direct method. 

Fig. 13. Computing time for several spheroid groups, arranged in x axis as shown in the inset 
of Fig. 13. Several number of incident angles between θ=0º and θ=90º where analyzed. 

Fig. 14. Monostatic RCS calculated for the group of 11 spheroids shown in the inset at φ=0º. 
For every incident angle, a horizontally polarized field (parallel to the xy plane) was considered. 

Fig. 15. Convergence analysis of the proposed method compared with the direct method. Same 
case as in Fig. 13, but with several values of 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗.  Results do not converge and for 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 =



9 a matrix close to singular is obtained. Our approach (labeled as “This work”) does not suffer 
that lack of convergence as all the results are indistinguishable for 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 9 and 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 from 
5 to 9. 

Fig. 16. Convergence analysis of the proposed method for 𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 5. Same case as in Fig. 13, 
but with several values of 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  It has been included the number of digits of accuracy of the 
2-spheroid case for each value of 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  obtained in Fig. 7. 


