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ABSTRACT: Multiple scattering of particles is calculated with the superposition T-matrix
method even if their minimum circumscribing spheres overlap. Starting from the T-matrix of
arbitrarily shaped particles, mutual interactions are computed using, exclusively, addition
theorems for spherical vector waves. Although a similar idea has been published recently for
the two-element case, its extension to an arbitrary number of particles can be very complicated
and even unfeasible. In this work, a new, more efficient approach is proposed that provides
practically the same results. In addition, it allows its easy application to an arbitrary number of
particles simultaneously with the classical superposition T-matrix formulation.

KEYWORDS: Electromagnetic scattering; T-Matrix; spherical vector waves; Addition
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1. Introduction

One of the most powerful methods of particle multiple scattering analysis is based on the
calculation of the T-matrix of an isolated element and the translation of spherical vector waves
(SVWs) [1]. This method, usually known as the superposition T-matrix method, has been
widely utilized for several decades up to the present [2-6]. It has been applied to a great variety
of problems such as particle scattering modeling in astronomy, oceanography, photographic
science, antennas, meteorology, plasmonic devices, light emitting diodes or solar cells [1,4,5].
The significance of this method has been recently reflected in [7], which proposes a common
data format for storing the electromagnetic scattering response using the T-matrix formalism.
Most of these works are based on computing this translation by applying addition theorems for
SVWs [8-10] between particles whose minimum circumscribing spheres do not overlap, as it
is a purely analytical method.

The minimum circumscribing sphere of an object is defined as the sphere with the smallest
radius that completely encloses the object. It is commonly used in this context because it
requires the smallest degree of SVW expansion to achieve a given level of accuracy. Fig. 1
shows the minimum circumscribing spheres for two particles in two scenarios: one without
overlap and one with. The two spheres overlap when the distance between their centers is
smaller than the sum of their radii.

[Insert Fig. 1 here]

Classical numerical methods in the field of computational electromagnetics, like the
Method of Moments (MoM), are usually much less efficient since they require a much larger
number of unknowns per scatterer even for simple structures such as Perfect Electric Conductor
(PEC) spheres. In addition, the matrix system is built numerically. In contrast, in the
superposition T-matrix method, the system is usually built analytically by using the addition
theorems and the number of unknowns is given by the number of SVWs. This number only
depends on the electrical size of the scatterer whatever its complexity. For more complex
particle geometries, numerical methods such as the Finite Element Method (FEM) and the
Finite-Difference in Time-Domain (FDTD) method are usually preferred. However, the size of
the equation system increases greatly with the size of the total problem since the volume
between particles must also be meshed. In addition, large meshes are difficult to generate and
result in poor quality elements that worsen the condition of the matrix system.

It is well known that addition theorems are always valid when the minimum possible sphere
circumscribing the scatterer does not overlap with any minimum sphere circumscribing
neighboring elements [3]. Although it was established in [11] that this condition could not be
necessary due to the analytic continuation of the solution in the entire space, this has only been
shown for two scatterers, smaller than half a wavelength. That was possible by greatly
increasing the maximum order of the SVWs and computing the T-matrix of the isolated
scatterer in quadruple precision. The combined result yielded a huge increase in computational
effort. From a purely mathematical point of view, this result can be justified by the fact that, in
the case of strongly overlapping minimum spheres, convergence is extremely slow for addition
theorems formulas, leading to a high number of coefficients in the expansion. This implies
computing very high order Hankel functions in relation to their argument, which provides very
high translation matrix coefficients due to the singularity of these functions. Therefore, it will
require greater precision in the calculation of T-matrix coefficients to keep the multiple
scattering computation precision. A similar explanation was given in [12].

A good way to avoid the limitations of addition theorems in the translation of SVWs is to
use an intermediate conversion to plane waves. That is, translation is done by plane waves
instead of addition theorems [13]. This idea was presented in [14] reporting excellent results.
Although the calculation of translation matrices can be greatly speeded up by using symmetry



properties [15], its major drawback is that it needs to solve Sommerfeld integrals carefully and
poor convergence problems can arise [16,17].

Another approach that avoids the limitations of the direct application of addition theorems
was introduced in [18] and [19] for antenna coupling. That method is based on the use of
equivalent infinitesimal dipoles to model the isolated element [20] and the subsequent coupling
of such models, exclusively using addition theorems in the whole process. A similar but more
elaborated idea has been recently shown in [21], by distributing multipolar sources across the
topological skeleton of the scatterer. The major drawback of these procedures is the difficulty
to obtain an equivalent model with great precision.

A different method also based exclusively on the use of addition theorems has been
proposed in [22] for the case of two scatterers whose minimum spheres overlap. This is
achieved by previously translating the origins of the local coordinates of the scatterers using
addition theorems, so that the minimum spheres of such scatterers referred to the new centers
do not overlap. Subsequently, addition theorems are applied to the T-matrices of each scatterer
in its new local coordinate system, to translate the SVWs between them. Then, the T-matrix of
the set is expressed in a global coordinate system by translating the origins of the local
coordinate systems to this global one. Consequently, the size of the T-matrices in their new
coordinate system increases, and therefore also the final matrix system, as the particles are
closer together. In addition, this method must be applied iteratively to analyze multiple
scattering [3,22]. Unfortunately, it could imply working with enormous T-matrices, and some
configurations may even be impossible to analyze, as we will show below.

In this work, it is introduced the use of a different approach, where the translation matrix is
computed with the scatterers centered in their original local systems of their minimum spheres.
To this aim, consecutive translations of SVWs are evaluated making use of addition theorems
to build the translation matrix. In contrast to the methodology suggested in [22], this approach
makes it possible to calculate the multiple scattering of an arbitrary number of particles at once,
in a simpler and more efficient way. In addition to the series truncation error in the SVW
expansion, the proposed method (as well as in works [14-17]) introduces an additional
convergence control parameter on the translation matrix coefficients themselves. The result is
an approximate translation matrix, which has better convergence behavior but limited final
precision. In this way, this approach provides sufficient precision with a much lower degree in
the SVW expansion compared to [11], and without needing to increase the order of precision
in computing to quadruple precision or higher. Consequently, the cost is greatly reduced with
respect to the direct use of translation theorems, as proposed in [11].

Several examples will be shown as a comparison with the results obtained in [22], those
obtained by direct calculation as in [11] and with commercial software.

Section 2 presents the theoretical development. Firstly, the superposition T-matrix method
is summarized. Next, the implementation method to estimate the translation matrix of SVWs
for overlapping minimum spheres is presented. It is based exclusively on addition theorems.
And finally, a brief discussion on the number of SVWs is given. In section 3 various cases are
presented, each of them with a different purpose. In the first case, the computational cost and
applicability of the proposed method is compared with the one discussed in [22]. In the second
case, the convergence and accuracy are studied in relation to the method of [22] and to the
method based on an intermediate conversion to plane waves [14]. In the third case, the
efficiency and the selection of parameters for the proposed method is evaluated. Finally, section
4 is devoted to state the conclusions.

2. Materials and methods
2.1 The superposition T-matrix method

An isolated particle i in a homogeneous medium can be completely described by its T-matrix
as
Tia; = b; (1)



where a; and b; are column vectors containing, respectively, the complex amplitudes of regular
and outgoing spherical vector wave functions (SVWFs) in which the incident and the scattered
field for the particle are expanded. These SVWFs are referred to a local coordinate system
whose center is the one that defines the minimum sphere circumscribing the particle.

On the other hand, two different particles can be related by a general translation matrix of
SVWs, G;;, between them

In this way, the incoming field in particle i coming from particle j, which is expanded in
regular SVWFs with complex amplitudes aEJ ), is obtained by translation of the field scattered
by particle j, which is expanded in outgoing SVWFs with complex amplitudes b;.

The total incident field on a particle belonging to a group of N particles can be expressed as
the incident field coming directly from outside the group plus the incident field coming from
the rest of particles. Expressing this in terms of complex amplitudes of regular SVWFs and
making use of (2) it follows that

a; = ag + X)-1 Gib;. 3)

Jj#i

In (3), ay; are the complex amplitudes of the expansion in regular SVWFs of the incident
field coming directly from outside.
From (1) and (3) we obtain
b; = T;ag + T; )1 Gyjb;. “4)

JET

If we consider (4) for each of the N particles belonging to the group, we can obtain the T-
matrix for the group Ty, where the SVWs for each particle are referred to its local coordinate

system
T, = [1- TG]'T. (5)

In (5), T is a block-diagonal matrix whose elements are the T-matrices for each single
(isolated) particle T;, and G is a square matrix whose elements are the general translation
matrices G;; given by (2). Thus, the application of this method requires being able to calculate
the submatrices G;; for an aggregate of arbitrarily shaped particles in arbitrary positions.

2.2 General translation matrix by using addition theorems

In this section we will discuss those cases in which the general translation matrix G;; can be

calculated using, exclusively, the three expressions of the addition theorems for SVWs [13, Eq.
5.24-5.26]:

MV (r —141) = 34650 (ro — o) MV (r = 1p) (62)

M (r —141) = 34650 (ro —1o) M (r = 1p), lr—1ol> 1o — 10| (6b)

M(3)(r—r ) =2gGpe(ro—1 :)M(l)(r—r ) [r—ro| <|rg—r1y| (60)
P (0] q Ypg\" o0 0 q 0J>» 0 (0] 0

where MS) (r — ry) are the regular SVWFs centered in r, and MS)(r — 1) are the outgoing
SVWFs. The summation indices p and g subsume the degree n, the order, and the polarization

of the SVWs. Coefficients ngil) (ro — o) and Gy, (rg — 1) Will be computed here using a



rotation-axial translation-inverse rotation technique [10] [23], although they can be computed
using expressions involving the Wigner-3j symbols [13].

The general translation matrix can be then obtained as follows:
1) Calculate the minimum circumscribing spheres for two particles. If their minimum spheres
do not overlap, condition in (6¢) is always satisfied and the divergence problem of the SVW
expansion inside the minimum spheres of arbitrary particles [24] is avoided. Thus, the scattered
electric field by particle j, E;, expanded in terms of outgoing SVWFs in the local coordinate
system of particle j centered in Oy, the center of its minimum sphere,

Eg(r—705) = oy by MS) (1 —15)), (7a)

can be translated to the local coordinate center of the minimum sphere of particle i, Oi, by using

(6¢)

Eg;j(r—710) = Xpjbyj Xpi Gpjpi(Toi — 7o) M,(,ll-) r—ro) (7b)
This field will be the incoming electric field in particle i coming from particle j, E g’ ), expanded
in terms of regular SVWFs centered in Oi

ED (=100 = piall) MO = 700 (7

l

By identifying (7b) with (7¢), (2) is easily derived, where G,; pi(roi -7y j) will be the
coefficients of the transpose of the general translation matrix G;;. This matrix has been obtained
by truncating the SVW expansions in both centers.

2) If their minimum circumscribing spheres overlap, find a plane that separates the two
particles, and does not intersect them. If it is not possible to find a separation plane, this
methodology is not applicable. Fig. 2 shows two particles i and j centered in Oi and Oj
respectively, with overlapping minimum circumscribing spheres. A separating plane has been
defined between them. They have been placed at the same y coordinate in a global coordinate
system to simplify the drawing, without loss of generality.

[Insert Fig. 2 here]

3) For each of the two particles, find a new coordinate system so that their new minimum
spheres referred to the center of these new coordinate systems do not intersect, i.e., they are, at
most, tangent to the separating plane found in step 2). It is important to note that there does not
exist a general method that provides a new minimum sphere that is tangent to the separation
plane, because it depends on the shape and attitude of the particle. Some cases of interest, where
the problem can be reduced to 2D, can be optimally solved using the methods developed for
solving one case of the Apollonius’ problem. This involves finding the circumference tangent
to a line that passes through two points. In any case, a general method can be used that consists
of the following procedure. First, find the line /; perpendicular to the plane that passes through
Oj. In this line we will locate the new center Ou. The position of the new center will be
determined by imposing that the distance to the plane is the same as the distance to an extreme
point of the particle £ that is the closest to the plane. In this way, the minimum sphere centered
in Ou should not intersect either the separating plane or the particle. The same procedure is also
applied to the other particle i/, and a new center Ov is then found. Fig 2 shows a 2D
representation.

4) Starting from the field scattered by particle j given in terms of outgoing SVWFs with
complex amplitudes b; in its original center Oj, given by (7a), translate it to the new center Ou



obtained in step 3) by using (6b):
Eoj(r —7ou) = Zpjbpj Zpu Gy pu(Tou = 7o) MG (r = 70,) 8
Sj r Tou pj Ypj &4puHpjpu Tou rO] pu r Tou)- (a)
This field can be directly expressed in terms of regular SVWFs with complex amplitudes b,,

Esj (T - rOu) = Zpu bpu Mz()?l) (T - rou)- (8b)

By identifying (8a) with (8b), the following matrix expression can be found if the SVW
expansions in both centers are truncated
b, = Glujbja Q)

where GV (rOu -7 j) will be the coefficients of the transpose of the decentering matrix

pjpu
Gyj. The new expansion will converge outside the minimum sphere of the particle at its new
center Ou, which always satisfies the condition given in (6b). In this way, this procedure
changes the convergence region of the expansion in outgoing SVWFs to that provided by the
new minimum sphere given by Rou >R oumin, With Roumin being the radius of the minimum sphere
that circumscribes the particle j centered in Ou (see Fig. 2). The decentering matrix Gy, can

be calculated by using rotations and axial translation as follows:
Gruj = [R;(@)D;(8))Ca(~[rou —To,1/D)] - (10)

Matrices Rj(cp ]-) and D; (9]-) make it possible the reorientation of outgoing SVWFs for
particle j. By rotating ¢; and 6; the original coordinate system of particle j, it will have its x-z
plane orthogonal to the separating plane with the z-axis orthogonal and oriented towards the
plane. Cl(—|r0u —Tyj | //1) is a matrix that allows for an axial translation of SVWFs from the
rotated coordinate system of particle j to the new center Ou. Elements of these matrices have
been defined in [23] and [10]. However, elements of Cl(—|r0u -7 j| //1) are computed by
using Bessel functions according to the second case of addition theorems for axial translations
given in Appendix 3 of [10].

5) Starting from the field scattered by the particle j towards particle i, given by (8b) in terms
of outgoing SVWFs with complex amplitudes b,, in the new center Ou, translate this field to
the new center in particle i, Ov, by using (6¢)

Esj (T - rOv) = Zpu bpu va Gpu pv (rO‘U - rOu) Mz(ﬁ;) (T - rOv) (1 la)

This field will be the incoming field in particle i coming from particle j, expressed in terms
of regular SVWFs with complex amplitudes af,] ) referred to the new center in particle i, Ov

EP(r —14,) = Xy a) MG (r — 75,). (11b)

It should be noted that condition in (6¢) is now satisfied. The divergence problem of the
SVW expansion inside the minimum circumscribing spheres of arbitrary particles [24] is
avoided since minimum spheres of particles referred to the new centers Ou and Ov do not
overlap (see Fig. 2). By identifying (11a) with (11b), the usual expression for non-overlapping
minimum spheres in matrix form is obtained when the SVW expansions in the new centers are
truncated:



a¥ = G,,b,,. (12)

where Gy, py (Toy — T'oy) Will be the coefficients of the transpose of the general translation
matrix Gy,.
By using addition theorems for axial translation and rotation properties [10][23] we have

Gy = [Ry (0)Dy,(8,)C(IT0y — Toul/2) Dy (8,)R, ()] (13)

In (9), ¢, and G, orientate the z-axis in the coordinate system associated to center Ou
towards center Ov, by a ¢@-rotation followed by a @-rotation. Matrices R, (¢,,) and D, (6,)
perform these rotations for the outgoing SVWFs referred to center Ou. C(|rg, — 7oy |/A) is @
matrix that allows for an axial translation of the coordinate system from center Ou to center Ov,
relating outgoing to regular SVWFs. Finally, 8, and ¢,, orientate the z-axis associated to center
Ov orthogonal to the separating plane. It can be achieved by a 8-rotation followed by a -
rotation of the regular SVWFs referred to center Ov, by using matrices D, (6,) and
R, (@,), respectively.

6) Starting from the incident field in particle i coming from particle j, given in terms of
regular SVWFs referred to center Ov (11b), translate this field to the original coordinate system
of particle 7, centered in Oi, by making use of (6a)

j j 1
EP(r —10) = 00 a0 T3 G i (oi = o) MGP(r —10). (14a)

This field in the same coordinate system can be directly expressed in terms of regular
()
i

SVWFs with complex amplitudes a

EP(r—1o) = Tpiall) M (r = 1) ()

4

From (14a) and (14b) the following matrix expression is found if the SVW expansion in
both centers Ov and Oi is truncated

a) =Gy a), (15)
where Gﬁ)pi(rol- — Toy,) Will be the coefficients of the decentering matrix G,;,,. This matrix

can be calculated by using rotations and axial translation as
G1iv = [C1(=IT0; — T0u| /DD (B)R (@))]". (16)

In (16), C;(—|rg; — Tro,|/A) is @ matrix that allows for an axial translation of SVWs from
center Ov to the original center Oi of particle i. Matrices D;(6;) and R;(¢;) make it possible
the reorientation of the regular SVWFs of particle i after recentering. By rotating 8; and ¢;,
the local coordinate system will coincide with the original local coordinate system of particle i
centered in O4.

7) Calculate the general translation matrix given by (2) from (9), (12) and (15)

Gij = Gliv Gquluj . (17)

In the particular case of having a separating plane orthogonal to the direction of the line
joining the original centers of particles i and j, G, reduces to



Gvu = [C(erU - rOul//l)]T- (18)

It should be noted that the equality given by (17) is true only if infinite terms are retained in
the SVW expansions in the new coordinate systems obtained in step 3). Since these SVW
expansions must be truncated, the general translation matrix thus obtained is an approximation
to the exact general translation matrix, but with an extra convergence control parameter given
by the maximum degree of these intermediate expansions. Truncation of the SVW expansions
results in the highest value coefficients of the general translation matrix G;; being truncated.
These coefficients arise from the evaluation of high-order Hankel functions. They are
responsible for the divergence of the solution as we are working with a finite precision to
compute the T-matrix. Excessive truncation of these coefficients provides results with lower
precision, but insufficient truncation of them still produces a wrong result. Increasing the
accuracy of the T-matrix by adding coefficients related to higher order SVWs will permit a
smaller truncation of the highest coefficients of the general translation matrix. In this way, the
result will converge in a greater margin of values of maximum degree of the intermediate
expansion. This will in principle improve the precision, although this improvement may
become very insignificant in those cases in which the precision of the T-matrix is good enough
for the distance between particles studied.

Therefore, we will have a relative convergence problem that will need to be studied. As
shown in section 3, results that converge better towards the solution can be found by means of
an adequate selection of these maximum degrees, at the cost of providing a limited maximum
precision.

2.3 Number of SVWs

In order to compute (17), the maximum degree values of the SVW expansion in its original
coordinate system (1jmq,) and in the coordinate system associated to the new center (nqjmax)
should be chosen for each particle.

As explained in [15], 74, should be chosen to provide the desired accuracy. The criterion
given in [25] can be applied:

Nmax = [KTomin + 0.045 3/ kTpmin (—Per)], (19)

where 7y, is the radius of the minimum circumscribing sphere in the original coordinate
system, k is the wavenumber and Ptr is the relative truncated (i.e., excluded due to the series
truncation) power in dB with respect to the total radiated power. Because of the very close
interactions in case of overlapping minimum spheres, it was verified in [14] that very good
results are obtained by choosing Ptr equal to -130 dB for elements with a minimum sphere with
radius less than a half wavelength. However, in the case of elements referred to a center far
away from them, we have observed that (19), choosing Ptr equal to -130 dB, cannot be enough
to estimate ngjmqy. Therefore, convergence studies will be presented in the next section.



3. Results and discussion
3.1 Computational cost and applicability

The computational cost and applicability of the method is compared with the one presented in
[22]. For this purpose, we first study two PEC disks, infinitely thin, with radii equal to a
wavelength. Unlike [22], which uses an analytical method to obtain the T-matrix of a single
(isolated) disk, here it will be computed with the FEM [26]. In future work, it would be more
convenient to use, whenever possible, T matrices that have already been computed by other
researchers [7]. However, for particles with arbitrary shapes and compositions, for which such
precomputed data may not be available, the FEM [26] can still be applied.

In [22], the chosen maximum index Njpq, was 20 for the T-matrix of the single disk in its
original center (the disk center). From this T-matrix, two T-matrices referred to new centers so
that their minimum circumscribing spheres do not overlap were obtained in that work. The
maximum index for both T-matrices in the new centers (equivalent to Ny j;4,) Was found
through a convergence study, being 32 for a separation distance of half a wavelength. With the
resulting T-matrices, the total two-disk T-matrix was computed using an expression given in
[3] for two scatterers. This expression requires the inversion of two matrices with a size equal
to the resulting T-matrices. Thus, the larger the overlap, the larger the size of the matrices to be
inverted in [22]. However, with the approximation proposed in this work, the size of the
matrices to invert is always the same, whatever the distance between the particles. It has been
also reported the same example but with a smaller separation between the disks (larger
overlapping), equal to 0.2 wavelengths. Table 1 shows the size of the matrices to be inverted in
[22] in contrast with the size needed in this work when the same expression is used to compute
the total T-matrix.

Fig. 3 shows the normalized bistatic radar cross section (RCS) of the two PEC disks
separated by half a wavelength. It has been obtained for a 60° incident angle, compared with
the results in [22] and a FEM simulation of the whole structure using the method provided in
[26]. To obtain these results we have applied the same parameters as in [22], i.e., jpqx Was 20

and Ngjmqx Was 32. It can be observed that the three results are practically identical.
[Insert Table 1 here]

[Insert Fig. 3 here]

The scattering of more than two particles can be easily dealt with by (5). However, in [22]
the author does not solve any problem of more than two scatterers. The method suggested in
[22] for more than two scatterers is based on forming a multi-scatterer in an iterative process
to build a new multi-scatterer T-matrix. Unfortunately, this strategy can be very inefficient as
the number of scatterers increases. In this sense, the example drawn in Fig. 4 is illustrative,
where only eight scatterers have been drawn. To consider a higher number, additional scatterers
are added forming two rows of parallel disks with radii equal to a wavelength separated
0.5 wavelengths. In turn, the top row is horizontally displaced by a distance equal to one
wavelength with respect to the bottom row. In this way, the minimum spheres of contiguous
scatterers overlap each other as shown in Fig. 4. For this example, a good strategy to apply the
method suggested in [22] is to group the disks two by two and group the result with another
group of four, and so on.

[Insert Fig. 4 here]

Fig. 5 compares the sizes of the matrices to be inverted for both methods. In the method of



[22], only the size of the matrices in the last iteration is shown. In order to compute ny jmax for
each group of scatterers, the value provided by (19) choosing Ptr equal to -130 dB has been
used. This underestimates the real value needed to achieve convergence in cases of highly
decentered spheres, as it will be shown later. Therefore, for our approach we really show the
total effort whereas for the method in [22] the effort is always greater than the effort shown in
the figure. Even so, it can be seen that our method requires much less effort than this one as the
number of scatterers increases. It should also be observed that, when grouping scatterers, the
degree of the SVWs increases rapidly. Thus, in this example, for a group of only 8 scatterers a
value of g jmay equal to 700 is needed. This makes computing the decentering and coupling
matrices of SVWs much more costly.

[Insert Fig. 5 here]

3.2 Convergence and accuracy

Two PEC spheroids are considered in this subsection. They have a major axis b of 0.6\ and a
minor axis a of 0.25b. Separation between original centers is equal to 0.3A (0.15A between the
edges of the spheroids), as shown in Fig. 6a.

It is first solved by using a 0.78A separation between the new centers to compute (17), which
is slightly higher than the minimum distance needed to avoid the overlapping problem in the
computation.

Fig. 7 shows the convergence of our result, compared with the FEM result of the whole
structure. The accuracy is computed as an approximate number of decimal digits in the
computation of T-matrix for the whole structure as a function of the maximum degree values
of the SVW expansion in the coordinate system associated to the new center (ng;mqx), chosen
to compute (17). It is given as a family of curves for different values of the maximum degree
of the SVW expansion in its original coordinate system (1jp,q,). The approximate number of

decimal digits is given by -log(RE) [27], where RE is the relative error defined as:
RE = Ma—Tremll (20)

ITreEMII

T, is the T-matrix computed with the proposed method, but with all the SVWs referred to the

same coordinate system, and Tpgy is the T-matrix computed with FEM, that is taken as a
reference solution.

[Insert Fig. 6 here]

If (19), choosing Ptr equal to -130 dB, were used directly instead of doing a convergence
study, this would give good results in this case. Thus, an njyq, value of 9 and an ngjmq, value
of 10 are obtained, which provide a 3.68 digits accuracy according to Fig. 7.

The same example is next solved by increasing the distance between new centers to 1.5 to
compute (17). Fig 8 shows the convergence of our result, compared with the FEM result. It is
worth noting that increasing the distance between new centers does not improve the precision
of the results. However, the computational effort to compute (17) is strongly increased since an
Ngjmax Of 18 is needed to obtain the same accuracy. The value provided by (19) was 14 with a
Ptr of —130 dB, and therefore, according to Fig. 8, it does not provide such a good estimation
in this case.

These new centers were also considered to solve the same problem with the method provided
in [22]. The obtained accuracy practically coincides with that shown in Fig. 8, with a maximum



difference in the RE of 10 between both methods. Therefore, both methods provide the same
results. However, the method described in [22] requires the inversion of two matrices with a
size of 720 (2x18x20). In contrast, the computational effort of our method implies the inversion
of two matrices with a size of 198 (2x9x11).

[Insert Fig. 7 here]
[Insert Fig. 8 here]

It should be noted that these new centers allow reducing the distance between spheroids
edges to 0.0375A, where a very strong overlapping occurs (see Fig. 6b). Fig. 9 shows the
convergence in this case, where the behavior is similar to the one shown in Fig. 8, but the
maximum accuracy is approximately half, due to the close proximity between the spheroids.
Fig. 10 presents the monostatic RCS results for the two-spheroid cases depicted in Figs. 6a and
6b. It can be observed that the result for 6b is slightly shifted compared to that obtained with
FEM, because the approximate number of decimal digits is lower in this case, which is
consistent with the results shown in Figs. 7 and 9.

[Insert Fig. 9 here]
[Insert Fig. 10 here]

The application of the proposed method provides the same convergence pattern for every
case of study. That is, for a starting accuracy given by the degree of expansion in SVWs used
to obtain the T-matrix of isolated particles (7jmqy ), the accuracy of the results increases
progressively as the degree of the SVWs in the new center (1 jyqy) until it sharply drops. The
range of Ngjmq, values where the problem has converged is wider the greater the initial
precision and the longer the decentering distance. However, choosing a longer decentering
distance increases the value of 1y jpq, required to obtain the same accuracy and, consequently,
the computational effort. This is a well-known behavior of relative convergence, which also
occurs in the method used in [14] and [15] and which has been well documented in [17]. Fig. 11
shows the convergence of the result obtained for the case depicted in Fig. 6a, by using a
transformation to plane vector waves to compute the translation matrix [14]. It is clearly noticed
that these results present almost the same maximum accuracy than the results shown in Figs. 7
and 8 for the proposed method and the same convergence behavior.

[Insert Fig. 11 here]

Fig. 12 shows the magnitude of the non-zero coefficients of three columns of general
translation matrices. Three matrices are compared: the translation matrix computed using the
proposed method to obtain the results in Fig. 8 with ngjmq, = 22, the translation matrix
computed using the method based on transformation to plane waves to obtain the results in Fig.
11 with &, = 3.75 for similar accuracy, and that obtained with the direct method that computes
it as in the non-overlapping case. Both the proposed method and the one based on plane wave
transformation, truncate the highest coefficients in a similar way in relation to the direct
method. It can also be observed that the truncation is greater as the degree of the SVW
expansion (Mj;,q,) increases. This value has been represented on the abscissa axis. These results
are in agreement with the reasoning given in section 2.2.

[Insert Fig. 12 here]



3.3 Efficiency and selection of the truncation degree

Although the number of SVWs needed in the T-matrix of the isolated element is greater in the
case of overlapping of minimum spheres, the proposed method is still more efficient than
classical numerical methods in computational electromagnetics.

Fig. 13 shows the computing time required to calculate the monostatic RCS for the case
given in Fig. 6a as a function of the number of spheroids placed in parallel. Results are given
for different numbers of incidence directions. It compares the computing times obtained using
the commercial software CST [28] and the presented method. The commercial software uses
the optimal solver method for the MoM in each case (a direct solver, for 11 spheroids, and
Multilevel Fast Multipole Method (MLFMM), in the rest of the cases) whereas we use a
conventional direct solver. As can be seen, our method is much faster in all cases, even for such
a simple scatterer. More complex geometries will lead to much larger computing time
differences between both methods. Fig. 14 shows the monostatic RCS for a case with 11
spheroids. An excellent agreement with commercial software can be observed since they
present a match of practically three significant digits. It is also provided the array factor
response, which is obtained without considering the mutual interactions, to note their effect
between the spheroids. It is computed by making G = 0 in (5).

[Insert Fig. 13 here]
[Insert Fig. 14 here]

Fig. 15 shows the results for the same case, obtained by applying the direct method that
computes the translation matrix as in the non-overlapping case, compared with the results
obtained in this work for different values of nj,,,,. We have used ngjmax = 9, With njpay
between 5 and 9 for the proposed method with a distance of 0.78\ between the new centers of
close spheroids with overlapping minimum spheres. They have been chosen according to the
two-spheroid case studied in Fig. 7, which ensures more than two digits of precision, and are
directly used for different sizes of particle groups. The results obtained with the proposed
method are indistinguishable since the maximum deviation found between them is 0.5%, which
corresponds to two hundredths of a decibel at the worst angle. However, none of these values
of Njmqy provides an accurate result using the direct method. In all the cases, double precision
has been used in the computation with Matlab. For 7,,,4,=9 in the direct computation, the
matrix to invert in (5) is close to singular (rcond=1.03E-17).

Figure 16 shows the results obtained by setting 7,4, = 5, With 1y jyq, from 9 to 14. The
result obtained is in accordance with Fig. 7, where the accuracy decreases as ngjmqy increases.
It can be seen that, for a precision of less than 1.5 digits the results begin to move away from
the correct result obtained with 14 pmq, = 9 . Therefore, results in Figs. 15 and 16 confirm that
the convergence study for two spheroids can be used for the study of an aggregate of an arbitrary
number of the same spheroids.

The convergence study for two particles could be avoided if a formula were available that
provided the optimum value of parameter 7gmqx as a function of the decentered radius and
Njmax- In this sense, in order to estimate the optimum 74y, S€veral cases of two spheroids
have been studied for a typical size of particles with a minimum-sphere radius up to 0.45A and
Njmax €qual to 10. It has been found the following phenomenological formula

Najmax = 758 (22242 — 1) + 10] Q1)

Tomin



where 7pminand rpgmin are the radius of the minimum sphere in the original center and in the
new center respectively, and [ ] denotes the closest integer value. This formula is built from the
baseline case consisting of non-overlapping spheres. In that case, decentering is not required
and thus we can consider 7pgmin = Yomin- 1t should be noted that for a ry,,;, lower than
approximately 0.37), very good results can be obtained with lower values of 7,,4,. However,
for such values (21) is no longer applicable since it has been obtained fixing njpq, = 10. The
different cases considered to calculate the slope in (21) are generated by considering variations
in the spheroid dimensions (minor axis) and different values for the separation between original
centers. This variety of parameter values led to different 7 gmin/Tomin ratios, and for each case
N4 jmax Was obtained. It was observed that the relationship between 74 jmqx and Toamin/Tomin
followed an approximately linear pattern, so finally the slope was estimated by applying linear
regression on the calculated 14 q, values. This formula has been successfully applied to such
complicated objects as arrays of patch or dielectric resonator antennas located in close
proximity. These results will not be shown here for the sake of brevity.

[Insert Fig. 15 here]

[Insert Fig. 16 here]

4. Conclusion

In this work it has been shown that the classical formulation of the superposition T-matrix
method can be utilized even if the minimum circumscribing spheres for the particles overlap.
To this aim, a new approach has been introduced. It is based on approximating the general
translation matrix as a product of three matrices. These matrices are computed by using addition
theorems and rotation properties. They represent decentering, translation and recentering
operations, respectively. This approach is more efficient and systematic than a previously one
found in the literature, which is based on the previous computation of decentered T-matrices,
giving practically the same accuracy for the two-element case.

The article presents the formal computational framework of the proposed method,
accompanied by an initial collection of case studies that highlight its advantages. Future
research on the methodology should involve additional case studies to further explore its
characteristics, for example, aiming to derive more general equations that ensure convergence
without the need of previous studies. The method gives researchers the ability to expand the
range of applicability of their superposition T-matrix codes with a small effort. Within this
widening, the method is applicable in a great variety of problems, practically eliminating the
restriction of separation distance between elements, such as: sensing of atmospheric particles,
the performance of astrophysical studies, analysis and design of antenna arrays, computing
RCS for military applications, optimization of light scattering for plasmonic devices, light-
emitting diodes, or solar cells.
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Table 1. Comparison of the matrix-to-invert sizes for two disks with radii equal to a wavelength

Separation between disks Matrix size in this work Matrix size in [21]
0.5 880 2176
0.2 880 5200
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Fig 1. Minimum-circumscribing spheres for two particles in two scenarios: a) without overlap,
b) with overlap.

Fig 2. 2-D representation of two particles centered in Oi and Oj, with overlapping minimum
spheres, and a separating plane. From this plane two new centers for the particles, Ou and Ov,
are obtained so that their minimum spheres do not overlap.

Fig. 3. Normalized bistatic radar cross section for two PEC disks with radius a = A separated
a distance d = 0.54. Incident angle equal to 60°.

Fig. 4. Eight disks with radii equal to a wavelength and mutually overlapping minimum
spheres.

Fig. 5. Maximum size of the matrices to invert as a function of the number of disks for the case
depicted in Fig. 3.

Fig. 6. Two spheroids and their minimum spheres with a separation equal to: a) 0.55, b) 0.312554.

Fig. 7. Accuracy in terms of approximate number of decimal digits for different values of the
maximum index njpq, in its original coordinate system, as a function of the maximum index
in the new center ng jpqy, for the case depicted in Fig. 6a. Eq. (17) is computed with a distance
of 0.78A between the new centers.

Fig. 8. Accuracy in terms of approximate number of decimal digits for different values of the
maximum index 7,y in its original coordinate system, as a function of the maximum index
in the new center g jmqy, for the case depicted in Fig. 6a. Eq. (17) is computed with a distance
of 1.5\ between the new centers.

Fig. 9. Accuracy in terms of approximate number of decimal digits for different values of the
maximum indexX 7, in its original coordinate system, as a function of the maximum index
in the new center ngjmqy, for the case depicted in Fig. 6b.

Fig. 10. Monostatic RCS calculated for two spheroids in Figs 6a and 6b at ¢=0°. For every
incident angle, a horizontally polarized field (parallel to the xy plane) was considered.

Fig. 11. Accuracy in terms of approximate number of decimal digits for different values of the
maximum index Njmq, in its original coordinate system, as a function of the integral truncated
value k., normalized to the wavenumber & as defined in [14], for the case depicted in Fig. 6a.

Fig. 12. Coefficients of three columns of the general translation matrix for the case depicted in
Fig. 6a. Comparison between this work (1gjmax = 22), the method based on plane waves

transformation (k. = 3.75k) and the direct method.

Fig. 13. Computing time for several spheroid groups, arranged in x axis as shown in the inset
of Fig. 13. Several number of incident angles between 6=0° and 6=90° where analyzed.

Fig. 14. Monostatic RCS calculated for the group of 11 spheroids shown in the inset at $=0°.
For every incident angle, a horizontally polarized field (parallel to the xy plane) was considered.

Fig. 15. Convergence analysis of the proposed method compared with the direct method. Same
case as in Fig. 13, but with several values of 1,q,. Results do not converge and for 1,4, =



9 a matrix close to singular is obtained. Our approach (labeled as “This work™) does not suffer
that lack of convergence as all the results are indistinguishable for 1,4, = 9 and njpq, from
5to9.

Fig. 16. Convergence analysis of the proposed method for 1,4, = 5. Same case as in Fig. 13,
but with several values of 74 jynqy- It has been included the number of digits of accuracy of the
2-spheroid case for each value of 144, obtained in Fig. 7.



